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Abstract

(single nucleotide polymorphism) correlations.

by introgression of taurine haplotypes.

Background: Genetic relatedness is currently estimated by a combination of traditional pedigree-based approaches
(i.e. numerator relationship matrices, NRM) and, given the recent availability of molecular information, using marker
genotypes (via genomic relationship matrices, GRM). To date, GRM are computed by genome-wide pair-wise SNP

Results: We describe a new estimate of genetic relatedness using the concept of normalised compression distance
(NCD) that is borrowed from Information Theory. Analogous to GRM, the resultant compression relationship matrix
(CRM) exploits numerical patterns in genome-wide allele order and proportion, which are known to vary systemati-
cally with relatedness. We explored properties of the CRM in two industry cattle datasets by analysing the genetic
basis of yearling weight, a phenotype of moderate heritability. In both Brahman (Bos indicus) and Tropical Composite
(Bos taurus by Bos indicus) populations, the clustering inferred by NCD was comparable to that based on SNP correla-
tions using standard principal component analysis approaches. One of the versions of the CRM modestly increased
the amount of explained genetic variance, slightly reduced the ‘missing heritability’and tended to improve the
prediction accuracy of breeding values in both populations when compared to both NRM and GRM. Finally, a sliding
window-based application of the compression approach on these populations identified genomic regions influenced

Conclusions: For these two bovine populations, CRM reduced the missing heritability and increased the amount
of explained genetic variation for a moderately heritable complex trait. Given that NCD can sensitively discriminate
closely related individuals, we foresee CRM having possible value for estimating breeding values in highly inbred

populations.
Background
“All genomes are equal, but some genomes are more equal
than others”” with apologies to George Orwell

(1903-1950).

Accurate measures of genetic relationships among
individuals are needed to accelerate artificial selection for
genetic improvement [1] and to refine methods for gene
discovery [2]. By accounting for patterns of relatedness,
particularly within but also between families, relation-
ships among individuals lay the foundation for robustly

connecting genotype to phenotype. Genetic related-
ness is currently estimated by traditional pedigree-based
approaches (NRM for numerator relationship matrices)
[3], augmented by molecular information [genomic rela-
tionship matrices (GRM)] [4]. Because meiotic recom-
bination is stochastic and pedigree information is not
always available or error free, GRM can give more pre-
cise estimates of genetic relatedness than basic pedigree
information since the latter makes simplifying assump-
tions [4]. For example, while we predict that full-sibs and
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half-sibs share approximately 50 and 25 % of their DNA,
respectively, simple pedigree information is unable to
account for the exact percentage shared, or indeed which
DNA segments have been inherited. Moreover, because
of linkage disequilibrium (LD) and linkage, associations
of DNA markers with quantitative trait loci (QTL) are
expected to erode during successive meioses at a slower
rate than pedigree relationships, which increases their
utility across generations [5]. Overall, these advantages of
marker-based relationships have increased the attractive-
ness of single nucleotide polymorphism (SNP) chips in
genetic improvement programs.

GRM are essentially computed by genome-wide SNP
genotype similarities (e.g. correlations) among all pair-
wise combinations of individuals [4]. These correlations
exploit SNP genotypes that are shared between two indi-
viduals, one SNP at a time. However, it is an open ques-
tion whether correlation is the best way to relate SNP
genotype data given that (1) any non-linear relation-
ships are poorly characterised or undetected by corre-
lations and (2) it is not immediately obvious what is the
best approach when assessing whole genomes that have
been abstracted to long complex numerical systems
described by a small three letter SNP alphabet (0,1,2).
We hypothesize that there is unexplored potential to
characterise alternative and/or complementary meas-
ures of relatedness, for example through pattern recog-
nition approaches sensitive to the information contained
in complex patterns. One such alternative is normalised
compression distance (NCD), which has previously been
used to successfully cluster various data, including musi-
cal compositions into genres [6]. The basic principle of
NCD as it applies to genomics is that patterns in the SNP
genotypes from one individual can be used to describe
similar patterns in the SNP genotypes from a second
individual. The ability of one individual to describe
another individual can be quantified mathematically by
data compression, approximated via real-world com-
pressors like the gzip application tool of UNIX systems
(http://www.gzip.org). If the data compression relating
the two genomes is strong, then they are deemed to be
closely related and are awarded a short distance. Apply-
ing this process systematically across a genotyped popu-
lation can be used to build a compression relationship
matrix (CRM), analogous to a GRM. In a preliminary
study, we explored the application of NCD to two sheep
populations, one that included multiple breeds [7] and
another with known sire groups and a half-sib population
structure (unpublished data). We found that the method
had merit in recovering both breed history and sire group
structure.

Prior to that, we explored a basic measure of within-
genome compression efficiency (CE) by expressing the
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SNP genotype file sizes in bits before and after data com-
pression by the gzip tool. Plotting these CE values rela-
tive to heterozygosity [8] yielded clusters of individuals
that are similar to those produced by population differ-
entiation such as F statistics (Fgr), and consistent with
phylogeography. Genome-wide CE can be considered
as reflecting patterns in both allele order and allele pro-
portion that are known to differ systematically between
breeds, but to be shared among closely related indi-
viduals. These shared patterns among individuals could
include, but not be limited to, genome-wide heterozygo-
sity and runs of homozygosity [9]. Similar to GRM cor-
relation, CE is a hypothesis-free pattern recognition tool.
It can exploit very complex shared patterns that do not
need to be defined a priori. The utility of inferred rela-
tionship matrices can be validated in the normal man-
ner—that is, by using them to predict genetic merit for
complex phenotypes using best linear unbiased predic-
tion (BLUP) and evaluating their accuracy.

Here, we studied two animal populations of commer-
cial relevance to Australian agricultural production that
have matching phenotype data for yearling weight, a
complex phenotype of moderate heritability, one Brah-
man (BB) and one Tropical Composite (TC). These popu-
lations have recorded pedigrees that show the presence of
both full-sib and half-sib individuals. Furthermore, these
populations represent historically admixed populations
that were founded from contributions of both Bos indi-
cus and Bos taurus progenitors, which are sub-species
that arose from independent domestication events and
last shared a common ancestor more than 200,000 years
ago [10]. For the first time, we compared compression-
based best linear unbiased predictions (CBLUP) with
genomic (GBLUP) and pedigree-based (PBLUP) predic-
tions for yearling weight. We present the outcome of the
clustering, the proportion of missing heritability [11] and
the prediction accuracies for yearling weight that were
obtained by using different approaches to estimate the
relationship between individuals.

Methods

Animal resources and SNP genotyping platforms

Animals, phenotypes and genotypes used in this study
were a subset of those used in [12]. Briefly, we used data
on 816 Brahman (BB) and 1028 Tropical Composite
(TC) cows genotyped using either the BovineSNP50 [13]
or the BovineHD (Illumina Inc., San Diego, CA, USA)
that includes more than 770,000 SNPs. For animals that
were genotyped with the lower density array, genotypes
were imputed to higher-density based on the genotypes
of relatives based on pedigree, as described previously
[14]. The imputation was performed using 30 iterations
of BEAGLE [15] within breeds, using 519 Brahman and
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351 Tropical Composite animals genotyped using the
BovineHD as reference. From the resulting 729,068 SNP
genotypes per individual, we extracted the genotypes
from 71,726 SNPs that were highly polymorphic in Bos
indicus cattle (GGP Indicus HD Chip; http://www.neoge-
neurope.com/Agrigenomics/pdf/Slicks/NE_GeneSeek-
CustomChipFlyer.pdf).

Animal clustering by genotype

Genome-wide CE

First, we computed animal-to-animal relationships
that could be ascertained from genotype data using the
basic CE approach corrected for heterozygosity (CEh),
as described in [8]. This approach computes the CE for
the genotype file of each individual and then expresses it
against heterozygosity (Het) across the whole genome:

CEh = (SB_SA>/Het,
S

where S and S, indicate the genotype file size expressed
in bits before and after compression by gzip, respectively.
The underlying principle of CEh is the same as for any
genetic clustering method: the closer the match in the
numerical patterns present in two genotype files is, the
closer is the inferred genetic relationship between them.
No attempt was made to discriminate DNA segments
that were identical by descent from those that were iden-
tical by state.

Normalised compression distance computation

The main weakness of CEh is that two genotype strings
can have the same CE and heterozygosity despite being
different (e.g. 0000000000 and 2222222222). It is not clear
how common this phenomenon is in real population
genetic data, but it has the potential to confound some of
the observed clustering. To address this, we used normal-
ised compression distance (NCD) [6] to develop alterna-
tive measures of relationship. NCD is a way of measuring
the similarity between two objects. NCD is obtained by
approximating a non-computable similarity metric called
normalized information distance (NID). The principle
is that NCD will award short distances to highly related
sequences, on the grounds that shared patterns result
in compression gain when two similar files are concat-
enated, but not when two dissimilar files are concate-
nated. In other words, a short distance is awarded when
the information in the first genotype file can be used to
describe the information in the second genotype file. We
used the gzip application tool of UNIX systems (http://
www.gzip.org) as our real world compressor. The applica-
tion gzip is based on the lossless data compression algo-
rithm DEFLATE that was originally described by [16].
NCD only clusters those genotype files that compress the
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same for the same reasons. That is, in contrast to CEh,
0000000000 will now only cluster with 0000000000 and
not with 2222222222,

As previously reported [7], the formula for the compu-
tation of NCD between two individuals x and y based on
their respective SNP genotype sequence is:

Z(xy) — min{Z®),Z()}
max{Z (@), Z(y) }

’

NCD(x,y) =

where Z(xy) represents the size of the compressed
file that contains both SNP genotype sequences to be
compared and Z(x) and Z(y) are the sizes of the com-
pressed file with the separate SNP genotypes for x and y,
respectively.

Building a compression relationship matrix from the NCD
values

Relationship matrices are based on estimates of similar-
ity, but through NCD we have computed ‘distance’ not
similarity. Therefore, the construction of the CRM from
all pair-wise NCD values first requires conversion of the
compression distance to an equivalent similarity meas-
ure. While distance and similarity share commonalities
they are not equivalent. In practice, there are numer-
ous ways of inter-relating them. Here, we explored two
approaches, producing two different CRM (CRM1 and
CRM2) from the same NCD input.

The first method (CRM1) made use of the universal
distance (d) to similarity (s) conversion law of Shepard
[17]. We used s;; = 2.5 %, which was selected in an
ad hoc fashion by confirming that the resulting similar-
ity between individuals i and j (s;) covered the 0-1 inter-
val observed for correlation (and therefore for all GRM),
where d;; is the NCD between the i and j individual pair.
This method proved to have a scaling issue which can bias
estimates of genetic parameters. This problem was over-
come through computation of CRM2 (described below).

The second method (CRM?2) attempted to better
ground the NCD in established genetics—that is, an
expectation of relatedness of 1 for self-self pairs, 0.5 for
full sibs and 0.25 for half-sibs. This expectation is gov-
erned by the laws of inheritance and the likely molecular
outcomes of meiosis when applied to a diploid mamma-
lian genome. CRM2 used a linear conversion method
defined as follows:

7Mej;;di‘j) for i=j
Si,j o 3 .
1.75[1 — G Mintdi) | g

" Max(d;;)—Min(d;)

This linear method has the appealing feature of yielding
an average value of 1 for self-self pairs, including a spread
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around 1 that reflects inbreeding. This result shows that
the CRM2 matrix is scaled in a manner more suitable
for the estimation of genetic parameters. The remain-
ing values approximate 0.5 for full sibs, 0.25 for half-sibs
and so on. Similar to GRM but unlike NRM, these values
were not pre-defined by pedigree expectation but derived
from the SNP genotype data. Therefore, they are likely to
more accurately capture the observed variability that is
inherent to the process of meiosis that gives rise to each
individual compared to its relatives.

The third compression-based relationship matrix
(CRM3) was entirely independent of the NCD approach
described above. The aim of CRM3 was to produce
another set of genetically sensible relatedness values,
through application of a two-step process: an initial win-
dow-based CE step and a subsequent correlation step. To
achieve this, we produced a matrix with as many columns
as sets of 50 consecutive SNPs that can be built from the
genotype file, and as many rows as animals in the analy-
sis. Individual cells in this matrix contain the CE value for
each window for each animal. This matrix was then used
as input for a correlation analysis so that, for each pair of
animals, the correlation across their respective CE values
was used as a measure of relatedness. Animals that had
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sets of SNPs that compressed in the same way along their
respective genomes were awarded high correlations.

GRM computation
The construction of the GRM was based on the correla-
tion between genotypes and was computed according to
the methodology developed in [4]:

zz”

23 pi(1—pi)’
where Z is the (number of animals by number of SNPs)
matrix of genotypes and p;, is the frequency in the popu-
lation of the B allele for the ith SNP. ZZ" represents the
number of shared SNP alleles between all pairs of indi-
viduals and the division of ZZ* by 23 pi(1 — p;) aims at
scaling the GRM to make it analogous to the numerator
relationship matrix (NRM) based on pedigree. This is the
standard approach for genomic prediction of breeding
values [4].

The computations of NRM, GRM, CRM1, CRM2 and
CRM3 are schematically summarised in Fig. 1 using
toy examples. The UNIX scripts for these examples are
in Additional file 1. We begin with a genotype file (a in
Fig. 1) that comprises 30 SNPs and five animals. The

GRM

a b Pedigree Graph Cc NRM

Genotype File 1.25  0.75 0.125 0.0625 0.125
. U2 Ul

30SNP x5 Animals | Wright, 1922 0.75 1.00 0 0 0
02000 ——— | 0.125 0 1.00 0.50 0.25
02001 0.0625 0 050 1.00 0.125
02002 0.125 0 025 0125 1.00
00110 VanRaden, 2008
00111 ———— GRM -

. 885% [t G W58 —ASE 085 [1.085 0.716 0.165 0.150 0.182]
a2z ‘ S AR SRR e f |o716 0802 0.165 0.110 0.130
otese ‘ Py i U e S BiGE D6 LS 5 0
(1’888? L -0.52 -067 067 093 -041 SNE ah BE S oo
10002 | [-0.36 -025 -041 -041 1.43 | ‘ ‘ ‘ - -
10110 [0.182 0.130 0.165 0.205 1.065 |

i | e _

11122 NCD Matrix CRM2

11220 | | T0.166 0.250 0.543 0.562 0.524] [1.061 0.710 0.154 0.118 0.192]]
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11000 \ | 0.543 0.543 0.174 0.22 0.543 0.154 0.154 1.017 0.750 0.154

11001 || | | 0.562 0.625 0.229 0.146 0.500 0.118 0  0.750 1.213 0.234

%i(l)?g "‘ | \ 10.524 0.591 0.543 0.500 0.171 | 10.192 0.064 0.154 0.234 1.036 J

21111 ‘

%2% ‘ h CE Matrix CRM3

22221 4 Windows x5 Animals 1.00 -006 0305 0.715 0.715

22212 9 (0.714 0.5 0.357 0.357 0.428 | - 0.06 1.00 0.931 0.372 0.372

%%2(1)2 .| 0.5 0.571 0.357 0.357 0.428 | =——————3 | 0.305 0.931 1.00 0.577 0.577

22222 9 | 0.571 0.714 0.5 0.357 0.428 0.715 0.372 0.577 1.00 1.00

>0 (0.777 0.666 0.5 0.388 0.555 0.715 0.372 0.577 1.00 1.00

Fig. 1 Given a genotype file (@) and a plausible pedigree (b), one can compute an NRM (c) and a GRM (d). One can also compute an NCD matrix
(e) which in turn can be transformed into CRM1 (f) and CRM2 (g) given two different distance to similarity transformations. A sliding window-based
version of the CE analysis (h) can be used to generate a correlation matrix which underpins the computation of CRM3 (i)
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genotype profiles of Animals 1, 2, 3, 4 and 5 are encrypted
by {10 “0” + 10 “1” + 102"}, {3“2” + 10“0" + 10 “1" + 7
“PL{3* (30" +3“1” 4+ 327} + “0,1,2"}, (3* {3“0" + 2
“1”7 4+ 3 “2” + “1”} + “0,1,2”}, and {10 * “0,1,2"}, respec-
tively. It becomes immediately apparent that the profiles
of Animals 1 and 2 and those of Animals 3 and 4 are very
similar. On closer inspection, we also find a similarity
between the profiles of Animals 3 and 5 because each trio
of identical genotypes (e.g. “000”) in Animal 3 is matched
by a trio of “0,1,2” in Animal 5.

The encrypted genotype profiles are awarded the fol-
lowing genome-wide CE; 30, 27, 23, 20 and 32 %, respec-
tively for Animals 1 to 5. On the one hand, Animals 1
and 5 have the most regular genotypes, resulting in the
highest CE and on the other hand, Animals 3 and 4 have
the most irregular genotypes, resulting in the lowest CE.
A plausible pedigree graph is given in b of Fig. 1, which
also contains two un-genotyped animals, Ul and U2, and
where arrows indicate direction from parent to offspring.
Based on this pedigree and these genotypes, we can com-
pute the NRM (c in Fig. 1) and the GRM (d in Fig. 1),
respectively.

The NRM reveals that Animal 1 is the sole inbred ani-
mal since it results from a parent-offspring mating. The
GRM reveals that Animals 2 and 4 are the most inbred
and captures the strong (parent-offspring) relationship
between Animals 1 and 2 (GRM value = 0.35) and Ani-
mals 3 and 4 (GRM value = 0.67). The GRM also captures
the most distant relationships (GRM value = —0.67), i.e.
of Animal 2 with Animals 3 and 4, which are unrelated
based on the NRM.

Based on this genotype file, we can also compute the
NCD matrix (e in Fig. 1), which shows the shortest dis-
tances on the diagonals (i.e. self—self comparisons). Con-
sistent with the GRM and the NRM, the longest distances
observed in the NCD matrix (NCD values = 0.625 and
0.591) are between Animal 2 and Animals 3 and 4. Two
distance-to-similarity transformations were used to gen-
erate CRM1 (fin Fig. 1) and CRM2 (g in Fig. 1). These two
CRM differ in that CRM1 has un-scaled diagonal values
and unbounded off-diagonal values, whereas CRM2 has
scaled diagonal values such that they average to 1 and off-
diagonal values bounded between 0 and 0.75.

The genotype file can also be divided in windows (or
genomic regions) of consecutive SNPs and CE can then
be computed for each window by animal combination.
Here, we have four windows of 7, 7, 7, and 9 consecutive
SNPs giving rise to the CE matrix h of Fig. 1. Windows
with seven identical genotypes, such as the first window
in Animal 1 and the third window in Animal 2, yield a
high CE of 71.4 %. Column-wise, a correlation matrix
based on CE values for all pairs of animals is computed
to generate CRM3 (i in Fig. 1). In this case, Animals 4 and
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5 are identical according to CRM3, while the relationship
between Animals 1 and 2 has disappeared.

Comparing CRM and GRM

Variance components estimates

We used mixed-model equations and the Qxpak.5 soft-
ware [18] for the estimation of genetic parameters and
the prediction of breeding values for yearling weight in
the two populations. The general model was as follows:

y:XB+ZZur+ e,
r

where y is the vector of yearling weight observations,
X in an incidence matrix relating observation in y with
the vector of fixed effects in B (i.e., contemporary group
comprised of sex, year and location, and the covariates
of age of dam, indicine percent and age of measurement)
[12]. The summation goes for r, the number of random
components fitted in the model. Z is an incidence matrix
relating observations in y with the vector of random
additive effects in u, which are assumed to be normally
distributed with zero mean and variance V(u,) = C,02,
where C, is the relationship matrix based on either the
pedigree (NRM) or markers (GRM, CRM1, CRM2 or
CRM3), and o2, is the additive genetic variance associ-
ated with u,. Finally, e is the vector of random residual
effects assumed to be normally distributed with zero
mean and variance V(e) = Ioez, where I denotes an iden-
tity matrix and o2 is the residual variance.

Twelve models were explored: one each (i.e., four) with
a single additive effect from either relationship matrix
(NRM, GRM, CRM1 and CRM2), and then an informa-
tive subset of combinations of the above models. These
12 models are defined in Tables 1 and 2 for BB and TC,
respectively.

Using yearling weight, we compared the performances
of NRM, GRM, CRM1, CRM2 and CRM3 according
to the resultant genetic parameters, EBV and predic-
tion accuracies. For the computation of accuracy, 20 %
of phenotypes were randomly set to missing values. The
reported accuracy was the average of 20 random splits
of the data (i.e. 80 % calibration versus 20 % validation).
Estimates of breeding values based on NRM, GRM,
CRM1, CRM2 and CRM3 were compared and the accu-
racy of the resulting predictions was computed from the
correlation between the EBV and the adjusted pheno-
types (Table 3).

Models 5, 6 and 7 (i.e. GRM, CRM1 and CRM2) can
estimate the fraction of missing heritability (C,,;) using
the formulae of [11]:

o2

Ciniss =1 — “

2 2’
oy +o;
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Table 1 Estimates of variance components for BB cattle: comparison of estimates based on pedigree (NRM), normalized
compression distance (CRM1 and CRM2) and genomic relationships (GRM)

Model effects Ve Vn Vg Vel Vc2 Vp

1.NRM 172.3642 174.8665 347.2307
2. GRM 167.3202 179.9430 347.2632
3.CRM1 161.9650 121.9581 283.9231
4. CRM2 168.6462 195.9485 364.5947
5.NRM 4 GRM 115.5917 113.9303 129.9348 3594568
6.NRM + CRM1 106.5055 123.3128 783912 308.2095
7.NRM 4 CRM2 113.3747 118.5415 140.8651 3727813
8. GRM + CRM1 102.9185 130.3848 751383 3084416
9. GRM + CRM2 151.5553 103.5573 104.4451 359.5577
10. CRM1 + CRM2 103.7444 76.7594 140.8459 321.3497
11.NRM + GRM + CRM1 79.1332 88.9443 99.2563 57.8128 325.1466
12.NRM + GRM + CRM2 82.3409 924328 98.8974 105.2992 378.9703

Ve residual variance, Vn genetic variance based on pedigree NRM, Vg genetic variance based on the genotype GRM; Vc1 genetic variance based on the genotype
CRM1, Vc2 genetic variance based on the genotype CRM2, Vp phenotypic variance

Table 2 Estimates of variance components for TC cattle: Comparison between pedigree (NRM), normalized compression
distance (CRM1 and CRM2) and genomic relationship (GRM)

Model effects Ve Vn Vg Vci Vc2 Vp

1.NRM 220.1370 207.5774 427.714
2.GRM 2174226 212.8462 430.269
3. CRM1 195.7910 1554020 351.193
4. CRM2 223.5068 2221801 445.686
5.NRM + GRM 143.1428 143.7108 159.4054 446.259
6. NRM + CRM1 131.0090 149.6712 98.5048 379.185
7.NRM + CRM2 146.4022 146.6484 165.8576 458.908
8.GRM + CRM1 127.3081 159.2306 94.8720 381411
9. GRM + CRM2 208.1053 120.8427 110.7054 439.653
10. CRM1 + CRM2 129.0538 97.1270 168.0027 394.183
11.NRM + GRM + CRM1 97.5807 109.4418 1226173 72.4005 402.040
12.NRM + GRM + CRM2 105.9689 116.9839 1226360 125.9694 471.558

Ve residual variance, Vn genetic variance based on the pedigree NRM, Vg genetic variance based on the genotype GRM, Vc1 genetic variance based on the genotype
CRM1, V2 genetic variance based on the genotype CRM2, Vp phenotypic variance

Table 3 Accuracy of estimates of breeding values from a  where o2 is the variance due to the genotype data (i.e.
model with a single random additive effect derived using  ¢jther GRM or CRM1 or CRM?2 in our context) and Uﬂz
different relationship matrices is the estimate of the additive genetic variance based
Relationship matrix BB TC on pedigree (i.e. the NRM in our context). NRM, GRM,
CRM2 and CRM3 have scaled values with self-self pairs

NRM 0182 (0.097) 01720043 (15se to or equal to 1. This implies that any differences
GRM 0228 (0.091) 01630052 petween their genetic parameter estimates are unlikely to
CRMI 0216 (0.085) 01670045 ¢ o simple artefact of scaling.

CRM2 0.232 (0.095) 0.172 (0.046)

CRM3 0.167 (0.066) 0.042 (0.026)

Signatures of selection
Means with standard deviations in brackets of 20 iterations in each of which a In order to detect signatures of selection and

random 20 % of the observations was set to missing values and predicted from . . . . c s
the remaining 80 % regions of evolutionary interest, we applied a sliding
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window version of CE, as previously described in [8].
This approach exploits the sensitive pattern recognition
capability of CE to identify haplotype blocks that occur
in one population but not in the other. Briefly, the CE
of non-overlapping windows at the population level was
computed for both populations and corrected for het-
erozygosity (CEh). The correction for heterozygosity de-
emphasizes simple patterns that are enforced by runs of
homozygosity (ROH). We computed 1435 windows of 50
consecutive SNPs across the 71 K SNPs. For comparison
purposes, the Fgp [19] in the BB vs. TC contrast was com-
puted for each SNP. Then, the Fg; of the whole window
was estimated based on the average F¢y of all SNPs con-
tained in the window.

Results

Clustering animals by genotype

In Fig. 2, each point in the scatter represents either a sin-
gle BB (top panel) or TC (bottom panel) animal. Two ani-
mals that cluster together can be assumed to share more
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genotype patterns than two animals that are further apart
and thus are more likely to be related by descent. The con-
sequence of using the new Indicine SNP chip was higher
heterozygosity (particularly in the BB population), cou-
pled with greater CE when compared to genotyping the
same population using the Bovine HD BeadChip. It is
likely that the increase in heterozygosity observed using
the Indicine SNP chip resulted from a reduction in SNP
ascertainment bias [20] that is associated with genotyp-
ing Bos indicus populations using the HD BeadChip that
was designed for Bos taurus. It is less clear why the CE
also increased but this may reflect the Indicine SNP chip’s
greater ability to exploit regularities at common runs of
heterozygous sites. Like any other form of regularity, runs
of heterozygosity (strings of 1s) are a possible source of
compressible patterns in genomes with high heterozygo-
sity. Based on its improved performance, all remaining
analyses were performed using the Indicine SNP chip.

Relatedness between animals using NRM, GRM and NCD
Tables 4, 5 and 6 show summary data that relate NRM
with GRM, NCD and CRM. The pedigree-based NRM
[1] was computed recursively after tracing back three
generations of ancestors. No inbreeding was detected
based on pedigree and the self-self relationships for
the 816 BB individuals averaged at close to 1 for GRM,
CRM2 and CRM3 (Table 6).

For relationships corresponding to NRM values of 0.25
(i.e. those existing between half-sibs or between grand-
parent and grand-offspring), the average GRM were
equal to 0.196 and 0.201 for BB and TC cattle, respec-
tively. Self-self relationships were equal to 0.997 and
0.987 for BB and TC cattle, respectively.

The relationship between GRM and NCD for each pair
of individuals is plotted in Fig. 3 for the main bulk of the
data. The full parameter space including self-self pairs is
in Additional file 2: Figure S1. Figure 3 reveals a popu-
lation sub-structure in both populations that is more
complex than that obtained by analysing either GRM or
NCD, separately. This suggests that these two metrics
operate synergistically and together provide a more com-
plete understanding of relationships in the population.
Highlighting half-sibs (as defined by pedigree informa-
tion) yielded a cluster that was centred on a GRM of 0.25.
Half-sibs that had a GRM of ~0 probably represent pedi-
gree errors or mistakes in DNA handling.

A distinct cluster with an increased NCD was observed
in the BB population (Fig. 3). This was also observed for
the TC animals but was less pronounced. In both popula-
tions, the pairs in these clusters had a given individual in
common. For the BB population, the Zebu genetic con-
tribution of this individual (#1100) was much smaller (i.e.
0.528 compared to greater than 0.829 for all the other
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Table 4 Summary statistics for BB cows compared using NRM, GRM and NCD
NRM N GRM NCD
Mean SD Min Max Mean SD Min Max
0.0625 50 0.044 0.026 —0.006 0111 1.050 0.011 1.025 1.071
0.1250 768 0.109 0.025 0.028 0.195 1.027 0.012 0.988 1.071
0.2500 8724 0.196 0.086 —0.108 0.386 0.997 0.033 0.904 1.117
03125 90 0.281 0.034 0215 0.369 0934 0.019 0.889 0.978
0.5000 201 0.288 0.068 0.167 0473 0.957 0.034 0.782 1.007
1.0000 816 0.996 0.039 0.928 1.670 0.118 0.002 0.112 0.123
Table 5 Summary statistics for TC cows compared using NRM, GRM and NCD
NRM N GRM NCD
Mean SD Min Max Mean SD Min Max
0.03125 832 0.004 0.032 —0.077 0.158 1.075 0.011 1.038 1.098
0.06250 2659 0.038 0.048 —0.137 0172 1.052 0.014 0.986 1.095
0.12500 630 0.061 0.037 —0.049 0.149 1.025 0.020 0.966 1.072
0.25000 15190 0.201 0.092 —0.075 0.455 0.987 0.046 0.799 1.100
031250 316 0.066 0.028 —0.003 0.157 1.051 0.009 1.023 1.074
0.50000 683 0.229 0.042 0.103 0.509 0.994 0.023 0.764 1.032
1.00000 1028 1.000 0.056 0.874 1401 0.118 0.002 0113 0.124
Table 6 Summary statistics for self-self pairs in both populations using NRM, GRM, CRM1, CRM2 and CRM3
Brahman (N =816) Tropical composite (N = 1028)
Mean Min. Max. Mean Min. Max.
NRM 1.000 1.000 1.000 1.000 1.000 1.000
GRM 0.995 0928 1.257 1.000 0.874 1.401
CRM1 1387 1.351 1425 1.388 1.345 1423
CRM2 1.000 0.958 1.049 1.000 0.950 1.045
CRM3 1.000 1.000 1.000 1.000 1.000 1.000

animals in the population), while for the TC population,
the Zebu genetic contribution of the individual in ques-
tion (#1582) was substantially larger (i.e. 0.652 compared
to less than 0.56 for all the other animals in the popula-
tion). Surprisingly, GRM was not able to identify the
markedly different Zebu contribution of these individuals
in either population.

Next, we attempted to identify genome properties
that were responsible for the similarities and differences
between the GRM and NCD measures of relatedness. To
answer this question, we overlaid the average Zebu con-
tribution (based on a principal component analysis that
also included Angus and Nelore data) [12] of each pair
(see Additional file 3: Figure S2). It is clear that, for both
populations, GRM and NCD resulted in measures of
relationships that were much more similar to each other

for pairs of individuals that were relatively purebred than
for cross-bred animals. Thus, for the BB population, the
linear part of the plot is enriched with BB pairs that have
an average Zebu contribution of more than 0.96, while
for the TC population, it is enriched in TC pairs that
have an average Zebu contribution of less than 0.1. Thus,
the correlation-based (GRM) and compression-based
(CRM2) measures of genetic similarity tend to agree on
estimates of relatedness for purebred pairs of individuals.

The impact of the two NCD mapping approaches
(CRM1 and CRM2) on the estimate of similarity from the
same NCD value is in Fig. 4. Both versions of CRM were
negatively related to NCD, because similarity is inversely
related to distance. CRM2 resulted in a linear relation-
ship whereas CRM1 resulted in a non-linear exponential
relationship. The linear relationship for CRM2 explains



Hudson et al. Genet Sel Evol (2015) 47:78

1.15 « Al pairs every 10th record
a + Animal 1100 included in pair
Half sibs by pedigree record

1.05 -

1.00

NCD

0.95

0.90

0.85

0.80

T T T T T 1
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
GRM

«  All pairs every 10th record
+  Animal 1582 included in pair
Half sibs by pedigree record

1.05

1.00

NCD

0.95

0.80 T T T T T 1
-0.2 -0.1 0.0 0.1 0.2 0.3 04

GRM
Fig. 3 Comparison of GRM and NCD. Each point represents a pair of
BB (BB; @) and TC cows (TC; b). We have plotted the parameter space
showing all pairs except the self-self pairs. An outlier animal with an
unusual Zebu contribution was identified by NCD but not by GRM
for both populations (red dots). Half-sibs in a pedigree form a main
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its higher accuracy in computing genetic parameters.
This is because the similarity values are more consistent
with biological expectation. In other words, the simi-
larities produced by CRM2 resemble more closely the
expected genetic relationships between self—self pairs (1),
full-sibs (0.5), half-sibs (0.25) and other relatives. Con-
sequently, CRM2 can be expected to estimate genetic
parameters more accurately.

Computational performance

We explored the computing time required for each popu-
lation. For the BB population and once the relationship
matrices have been built, the mixed model that contained
a single additive effect took 31 s for the NRM, 4 min
and 6 s for the GRM and 4 min and 10 s for the CRM2.
The longer time taken for the models with either GRM
or CRM2 reflects the higher density of these marker-
based relationship matrices. However, the computing of
NCD, which is required for CRM1 and CRM2, consumed
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substantially more time than the pair-wise correlations
required for GRM. In our implementation, it took 102.6
and 162.4 h to compute the NCD matrices for BB and
TC, respectively. The reason being the DEFLATE algo-
rithm included in the gzip tool was not incorporated into
the UNIX script, so we had to resort to numerous input
and output operations that call on the compression func-
tion of GZIP externally.

Computational demands aside, the relationship matri-
ces based on NCD were highly related to the GRM based
on the strong negative correlation between pairs of indi-
viduals (high correlations corresponded to small NCD
distances) (Tables 4, 5). Furthermore, we have previously
documented the broad similarity in clustering produced
by the GRM and NCD dimension reduction plots for
sheep breeds [7].

Estimating genetic parameters and accuracies of predicted
breeding values

Overall, estimates of genetic parameters were quite simi-
lar for GRM and CRM2 (Tables 1, 2). It should be noted
that the point estimate for CRM2 explained more genetic
variation (Vc2) than the NRM and GRM for both the BB
and TC populations, although the absolute difference was
small and likely not statistically significant. Furthermore,
in the light of the equivalent cross-validation accuracies
(perhaps even better for the BB population) that were
obtained by using CRM2 (Table 3), it is tempting to spec-
ulate that implementing CRM2 for these populations and
for this phenotype (YW, yearling weight) using the lat-
est Indicus 71 K SNP chip might lead to slightly better
breeding decisions. Estimates of variance components
based on CRM3 are in Table 7. CRM3 did not result in
as much as an increase in the genetic variance explained
compared to NRM and GRM as observed for CRM1 and
CRM2. For both populations and in agreement with the
accuracy results, the missing heritability was lowest for
CRM2, which implies that it outperformed the GRM by a
small margin (Table 8).

Signatures of selection
The comparison between Fgr and CEh revealed a high
positive relationship (r = 0.75), which confirmed the rel-
evance of using CE to detect putative selected genomic
regions in cattle. Genomic windows on the X chromo-
some consistently displayed high values for both metrics,
which confirms previous results observed for populations
that include Bos indicus and Bos taurus ancestry [21]. A
likely explanation is that the level of sequence divergence
between the X chromosomes of these two sub-species is
greater than that between autosomal chromosomes [21].
To identify autosomal genomic windows with mark-
edly different genetic patterns between BB and TC
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cattle, we examined the genome-wide distribution of
CEh in each population (Fig. 5). The average CEh for
BB and TC populations was plotted against Fgr and
yielded a positive relationship (Fig. 6a), which suggests
that the approach has merit in population differentia-
tion. The difference between the CEh for the BB and TC
populations was plotted against Fgy (Fig. 6b) to identify
population-specific outliers. Detailed investigation of
the extreme windows in Fig. 6b allowed us to identify

population-specific sweeps. The autosomal windows
with the most extreme differences between the two
populations are in Table 9. Nine of the ten regions had
high CEh values for the BB population and much lower
values for the TC population (Table 9). The gene content
of each region was determined using reference genome
built Btau UMD3.1 (see Additional file 4: Table S1) and
then compared with published data on selection sweeps
in cattle.
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Table 7 Estimates of variance components with models that include CRM3

Breed Model effects Ve Vn Vg Ve3 Vp
BB CRM3 261.6966 - - 83.9794 345676
NRM + CRM3 149.0205 142.6249 - 64.2163 355.862
GRM + CRM3 148.1431 - 153.8330 52.7322 354.708
TC CRM3 326.7811 - - 109.0720 435853
NRM + CRM3 182.0812 183.6592 - 76.0604 441.801
GRM + CRM3 189.8195 - 185.4988 67.5526 442871
Table 8 Fraction of missing heritability for each model o
and population a o Alwindows
e X chromosome windows
Model effects BB TC 35 4 . T
%) "
2 .
NRM + GRM 0467 0474 g . .
NRM + CRMT 0611 0,603 2 %7 . e .',."::'.- S
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£ atel s L
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estimated separately for BB (blue) and TC cattle (red) and plotted in quadrant are identified as important by CEh but not F;. Blue dots are
genomic order. Windows with extreme population differences in CEh windows on the X chromosome. Windows in the top left quadrant
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These regions carry genes that are involved in bovine
reproduction (NCOA2), immune function (BCL2) and fat-
ness (ATPSH) (Table 9). It is also important to note that
there were two separate instances where two highly func-
tionally related proteins were identified in independent
genomic regions: (1) monocarboxylate transporter coded
by SLC16A5 on BTA19 and its paralog coded by SLC16A4
on BTA3 and (2) two subunits of the mitochondrial ATP

synthase, the F1 catalytic core complex coded by ATP5B
on BTA5 and the membrane-spanning FO complex coded
by ATP5H on BTA19 (see Additional file 4: Table S1).

Discussion

Inference of genomic relationships

It is well established that shared patterns of allele compo-
sition can be used to infer genomic relationships between
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Table 9 Genomic windows with extreme differences in CEh between BB (BB) and TC (TC) cattle

Chr Region (Mb) Fsr (Rank) CEh BB CEhTC CEh_Diff Genes Candidates Reference
5 56.2-56.6 0.20(1) 4.786 2462 —2.324 20 INHBE, INHBC (reproduction) [12,25,26],
19 56.6-57.1 0.09 (214) 4.230 2416 —1813 20 ATP5H (fatness) [29]

3 33.2-33.5 0.06 (796) 4322 2.844 —1478 8

9 10.6-10.9 0.11(89) 3.601 2.149 —1451 1

16 25.6-259 0.03 (1305) 3.839 2.734 —1.105 1

24 61.1-62.1 0.13(22) 2.945 2.004 —0.941 6 BCL2 (immune response)

5 56.6-57.8 0.10(174) 3.789 2.887 —0.902 54 Adaptation traits [12,26]

1 1324-132.6 0.06 (231) 3.144 2268 —0.876

21 57.4-57.7 0.07(732) 2.878 2.033 —0.845

14 35.5-37.3 0.08(417) 1.886 2811 0.926 10 NCOA?2 (reproduction) [30]

individuals. Since both GRM and CRM are based on
genome-wide similarity, it is not surprising to detect a
close relationship between these two approaches. NCD
shows merit as an alternative or complementary meas-
ure of genomic relatedness to GRM. Overall, short NCD
distances reflect high co-sharing of genome-wide het-
erozygosity, runs of homozygosity and composition-
ally complex haplotypes, which may not be identified by
other approaches. Collectively, these genomic features
have implications for inbreeding, population structure
and the identification of signatures of selection.

The quadratic relationship between NCD and GRM
implies that NCD is particularly well adapted to discrimi-
nate closely related individuals. This conclusion is borne
out by current and past data. Previously, we found that
NCD can separate some full-sibs from half-sibs in cases
where GRM cannot [7]. This observation may be consist-
ent with that of [22] who found that a haplotype-based
method uncovered Mendelian inconsistencies between
second degree relatives more effectively than single-SNP
approaches. Furthermore, in a recent application of the
NCD method, we examined its application to a high-
density sheep SNP dataset and found that it was able to
differentiate two Poll Merino sire groups from each other
and that Poll Merino individuals could be distinguished
from Merino individuals by NCD but not by GRM [7].
In the data presented here, NCD clearly differentiated an
individual with an unusual Zebu contribution in both the
BB (separating an individual that is genetically more like
a TC) and the TC (separating an animal that is geneti-
cally more like a BB) populations. This sensitive discrimi-
nation may reflect that NCD relies on ‘distance, which
enforces separation, versus the correlation’s use of ‘simi-
larity, which establishes connection.

Any measure of genomic similarity (whether correla-
tion, CE, or other) needs to be clearly grounded in the
biology of meiosis for it to provide meaningful estimates
of genetic parameters. That is, it must yield the expected

relationship values of ~1 for self—self pairs, ~0.5 for full-
sibs and ~0.25 for half-sibs. These values are implicit
(they emerge naturally) for correlation-based measures of
relationships, but not for NCD. In this regard, the linear
transformation that we used for CRM2 was superior to
the quadratic transformation [17] of CRM1. The valida-
tion of CRM2 was apparent through the higher estimate
of genetic variance, the corresponding slight reduction in
missing heritability and the modest increase in accuracy
of predictions of phenotype when compared to GRM and
NRM.

Other authors have explored various options for opti-
mising estimation of genomic relationships. For exam-
ple, [23] found that parameter estimates may be biased
if the genomic relationship coefficients are scaled dif-
ferently from the pedigree-based estimates. They found
that a reasonable scaling was possible by drawing on
observed allele frequencies and scaling the relationship
matrix such that the diagonal elements averaged 1. Scal-
ing the diagonal elements to average 1 is the same logic
that we applied when constructing CRM2 from the NCD
values. This helps addressing the potential for biases in
parameter estimation. In another example of new meth-
ods for genomic prediction, [9] published a method
to derive relationships based on runs of homozygosity
(ROH). They found that the ROH method produced
more accurate GEBV than two alternative methods based
on population-wide linkage disequilibrium and link-
age. We hypothesize that this ROH method is related to
our compression method. Shared ROH will obviously be
clustered by compression, and thus, will contribute to the
construction of the CRM. However, NCD also detects
complex haplotypes beyond ROH. Understanding the
biological meaning of ROH length and their implications
for inbreeding and population bottlenecks is an active
area of research [24]. However, it is currently not clear
what inference can be drawn from the shared complex
haplotypes that we are able to detect by NCD. The GRM
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is computed one SNP at a time, so it is not formally con-
nected to haplotype structure.

Detection of sweeps

Previously, we reported that by sliding a CE-based pop-
ulation-level window along genomes, we could identify
haplotypes that are likely the result of recent positive
selection [8]. Obvious examples are genomic regions
with a high level of homozygosity that arise in response
to selection for a single beneficial haplotype (i.e. a ‘hard’
selective sweep). The consequence is an increase in CE
and, applied to human data, this approach identified clas-
sic signatures of selection such as European eye and skin
colour, Asian hair texture and European and Masaai Ken-
yan lactase persistence [8].

In this study, we applied the compression-based slid-
ing window analysis to two bovine populations. Analy-
sis of genomic windows with the largest difference in
CE between the two populations successfully identified
regions with major effects on production traits in tropi-
cally adapted cattle [12]. The top ranked region contains
two inhibin genes (INHBE and INHBC), which have been
previously identified as associated with fertility traits in
tropically adapted cattle [25]. The precise mechanism
that drives the outlier behaviour of CE is not clear.

Inspection of the genome-wide profile revealed that
nearly all extreme genomic regions were characterised
by a greater CE in BB cattle, well above the genome-wide
average CE (Fig. 5). This suggests that selection specific to
the BB population may have caused this difference in CE
between these two populations. However, the reduced CE
observed in the TC cattle also appeared to have an effect on
the identification of differences between populations. The
top ranked region on Bos taurus chromosome 5 (BTA5)
(between 56.2 and 56.5 Mb; Fig. 5; Table 9) co-located with
an association signal with large effects on yearling weight,
body condition score and coat colour, which was reported
for tropically adapted cattle [12]. While the analytical
approaches between these two results are very different
(genome-wide association analysis (GWAS) versus CE),
the two studies used the same populations of Australian
BB and TC cattle. This prompted a comparison with genes
that were identified as putatively under selection in five
independent populations of indicine (BB and N’'Dama) and
taurine cattle (Holstein, Angus and Charolais) [26]. None
of the genes that were identified in our study appeared to
be under selection in either of the indicine breeds but 59
genes located on BTA5 [between 56.2 and 57.8 Mb; (see
Additional file 4: Table S1] were previously identified in
the Charolais breed [26]. Our results indicate that CEh
recapitulates previous findings based on established met-
rics for detecting selection sweeps. However, it is interest-
ing to note that many of the top ranked genomic windows
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based on CEh would not have been classified as outliers
using F¢p and may constitute novel findings.

Commercial application

In a commercial context, broiler chicken and dairy cat-
tle breeding populations have small effective population
sizes, high levels of inbreeding and both use genomic
prediction as part of their modern breeding strategies,
as discussed in [27]. We anticipate that the NCD method
used here also has value in those two industries because
it can sensitively discriminate the closely related indi-
viduals they make use of when developing their breeding
programs. According to [28], for a given effective popula-
tion size, the major drivers of genomic EBV accuracy are
(1) LD between markers and QTL, (2) training set size,
(3) heritability and (4) distribution of QTL effects. There-
fore, in order to generalise our findings of the possible
utility of our method in genomic prediction, we propose
that future work should explore phenotypes with a lower
heritability and different genetic architectures.

Conclusions

NCD clusters a genome in a manner that is broadly simi-
lar to correlation-based approaches. Unlike GRM, NCD
exploits patterns that are present in haplotypes and unlike
ROH-based methods, NCD can identify and exploit hap-
lotypes that have a more complex genotype composition.
In this study, CRM2 has been validated by the fact that
we show that it has a tendency to reduce the missing her-
itability and increase the phenotype accuracy for a mod-
erately heritable complex trait in two bovine populations.
The fine-grained resolution that NCD appears to possess
may lend itself to situations for which the capacity to dis-
criminate very closely related individuals is of particular
value. A sliding window version of the analysis aimed at
detecting sweeps identified regions caused by introgres-
sion of taurine haplotypes.

Additional files

Additional file 1. The UNIX scripts for recreating the toy GRM and CRM
that are described in Figure 1. This file contains the UNIX scripts allowing
the reader to recreate the example GRM and CRM from Figure 1.

Additional file 2: Figure S1. Comparison of GRM and NCD across the
full parameter space including self-self pairs. This figure illustrates the
relationship between GRM and NCD across the full parameter space.

Additional file 3: Figure S2. Comparison of GRM and NCD without self-
self pairs and highlighting each pair with its average Zebu contribution.
The clearest relationship between GRM and NCD s for pure bloodline
pairs. This figure illustrates how the relationship between GRM and NCD is
influenced by the breed characteristics of the pair of animals in question.

Additional file 4: Table S1. Genome regions with extreme differences in
CEh between BB and TC cattle. This file identifies the genomic regions that
are different between BB and TC cattle as determined by sliding window
CEh.
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